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Equivalent Representations of Nonuniform
Transmission Lines Based on the Extended
- Kuroda’s Identity
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IEEE ,

Abstract —Kuroda’s identity may be extended to circuits consisting of
lumped reactance elements and nonuniform transmission lines. It is shown
that these circuits are equivalent to circuits consisting of cascade connec-
tions of nonuniform transmission lines whose characteristic impedance
distributions are different from original ones, lumped reactance elements,
and ideal transformers. If a characteristic impedance distribution W{(x) of
an original nonuniform transmission line is given, a characteristic imped-
ance distribution Z(x) of a transformed nonuniform transmission line may
be uniquely obtained using W(x). Moreover, by using these equivalent
transformations, network functions of these transformed nonuniform trans-
mission lines can be derived exactly.

I. INTRODUCTION

T IS well known that nonuniform transmission lines

show superior transmission responses than the ones of
uniform transmission lines. But, it is quite difficult to find
the exact network functions of general nonuniform trans-
mission lines from the telegrapher’s equation except some
nonuniform transmission lines [1]-[12].

On the other hand, we showed that the network func-
tions of a class of nonuniform transmission lines can be
exactly derived by using extended Kuroda’s identities to
mixed lumped and distributed circuits [13].

In this paper, we show a method to extend Kuroda’s
identities for mixed lumped and nonuniform distributed
circuits. Nonuniform transmission lines are shown in the
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limit of cascaded transmission lines (CTL’s) when line
length of unit element (UE) approaches zero. By applying
Kuroda’s identities to circuits consisting of a single stub
and CTL’s n times, we can show that Kuroda’s identities
can be extended to circuits consisting of a lumped reac-
tance element and a nonuniform transmission line as the
limit case. The transformed circuit becomes the one con-
sisting of a cascade connection of a nonuniform transmis-
sion line, a lumped reactance element, and an ideal trans-
former. Namely, if a characteristic impedance distribution
W(x) of an original nonuniform transmission line can be
integrated, a characteristic impedance distribution Z(x) of
a transformed nonuniform transmission line may be
uniquely obtained using W(x). Also, if an exact network
function of an original nonuniform transmission line is
known, a network function of a transformed nonuniform
transmission line can be obtained exactly. We derive exact
network functions of several nonuniform transmission lines
by applying extended Kuroda’s identity to nth order bi-
nomial form nonuniform transmission line, exponential
transmission line, and hyperbolic secant squared tapered
transmission line.

II. REPRESENTATION OF NONUNIFORM
TRANSMISSION LINES

Cascaded transmission lines (CTL’s) are shown in Fig.
1(a), where line length and a characteristic impedance of a
lossless uniform transmission line (UE) are //n and W,
(i=12,---,n), respectively.
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Fig. 1.
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Cascaded transmission lines and a nonuniform transmission line.

CHARACTERISTIC IMPEDANCE DISTRIBUTION OF NONUNIFORM

TRANSMISSION LINE

Characteristi. Impedance
Coefficirents ay Distribution W(x) Note
a =40
1 " Wo(x) =W uniform transmission line
u 0
(m=1,2,---)
al=1/h linearly tapered trans-
- - Lx i
2 a=0 Wl(x) = Ho(l ) mission line
(m=2,3,---) h : taper coefficient
2
a,=2/h , a,=1/h
1 2 :
1x .2 parabolic tapered trans-
3 a= [} W (x) = Wo(l +T|"E—)
4 mission line
(m=3,4,---)
a= (2"
n-th order binomial form
(w=1,2,---,n) 1x.a
4 W (x) = Wy (1 + ) nonuniform transmission
ot 0
line
(r=1,2,---)
u - ) )m exponential transmission
i
5 LI W (x) = Wgexp(8x) Line
(m=1,2,-—) § : taper coefficient _
. - &) )2|n
2m ml|
= - 2 ; 5
6 L 0 WH(x) = woexp[(Sx) 3 Hermite line
(m=1,2,~--)
o o Lase)?™
1
m 2 (2wl 2 hyperbolic cosine squared
7 a1~ 0 Nch(x) = Wycosh”™ (6x)
tapered transmission line
(m=1,2,~--)
wro1ym-1
a, (-1)
| square root tapered
8 L= 3‘)-{ )" W =u e dx
nl 2 transmission line
(m=1,2,---)

Here, we define the characteristic impedance of the ith
UE of the circuit shown in Fig. 1(a) as follows:

W,=W,|1+ 2 (i—1)+ 22 (i-1)
n n2

+ ... Z—’,ﬁ(i—l)"’+ .

where W, is the characteristic impedance of the first UE
and a,, (m=1,2,---) are constants. Also, the coordinates

x of the ith UE is given as follows [13]:

' i
x=—1.
n

)

By setting coefficients a,, appropriate values and proceed-
ing to the limit n— oo [13], we can obtain the various
characteristic impedance distribution W{(x) of nonuniform
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transmission lines from (1)
) 2

)'"+---]. (3)

W(x)= lim VV,:WO[Hal(—’lﬁ)mz(

n—oo

N]}( le

TR am(
Several examples are given in Table I.

III. EXTENDED KURODA’S IDENTITIES FOR MIXED
LUMPED AND NONUNIFORM DISTRIBUTED CIRCUITS

By using Kuroda’s identity » times to the circuit consist-
ing of a single short-circuited stub and CTL’s, we can
obtain the equivalent transformation I in Table II [13].
Where k; is the transformer ratio obtained after the jth
Kuroda’s identity, and given by

1 J
kJ:1+Zl§1vVi (j:1a29"'9n)' (4)
Similarly, for the circuit consisting of a single open-circuited
stub and CTL’s, we can obtain the equivalent transforma-
tion II in Table III [13]. Kuroda’s identities in Tables II
and III are dual transformations.
By substituting (1) in (4), we get

=1+ j+%{(j;1)2+(j—l)}

4 L 2

LU= G- (=1)
{ }

2] 3 2 6

4o

an [G=D""  G=D" 1,
+nm{ DT G )

By using the same techniques shown in [13], we obtain

k= tim k=1 22| () 05 (7) -3 (5)

,:11 (§)’"+'+ ...]:1+LiofoxﬂW(7\)d(~>}) (6)

and

v

W.
Z(x)= lim Zj=nlgr:° j_:kj

znv;(olz _ w(x)
k(x) [1+-Ll—0f0"/’w()\)d(%)r

™

where
L=nL,. (8)
Namely, a characteristic impedance distribution Z(x) of a

transformed nonuniform transmission line may be uniquely
expressed with an integration of a characteristic impedance

- distribution W{x) of an original nonuniform transmission

line. The impedance z and Z of the single short-circuited
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TABLEII
KURODA’S IDENTITY I

TABLE IV
EXTENDED KURODA’S IDENTITIES

Original circuit Equivalent circuit

«—— 3§ ——>z Lk

z T L ——>

Formula

J

1

k =1+=12 W (3=1,2,---,n) , kg =1

3 L g=1 T 0
T L

LT (1=1,2,~~~,n) > L=

-1 o
L, Ln ) ZJ : characteristic impedances

TABLE IIT
KURODA’s IDENTITY II

Original circuit Equivalent circuit

C

C n
o—] lIl/n 2/n 2/n z/nI k el
= OO = - - O—O O——0 --- 00 ---
Y Y
5 Yy n 1 J n '€
OO == = O == = OO Omme) == = OmeianD) - = -
) — & 2 ——>
Formula
1 J
kJ =lte Iy (L,2,--m) » kg =1
1=1
_c
Gt GeLae—w L, g =g
-1 n

C,C ,vy , Y - characteristic admittances

stubs in Table II yield
)

lim z= lim [ JnLgtan 'Bl] JLoBI

n—00 n-—>o0
. L j B!
lim Z= lim tan—— ] %81 (10)
n-— 00 n—o0 kn k
where
k= k()] (1)

and B is the phase constant. The single short-circuited
stubs become lumped inductances. Similarly, the single
open-circuited stubs in Table III become lumped capaci-
tors. Extended Kuroda’s identities for mixed lumped and
nonuniform distributed circuits are shown in Table IV.
Where

k'—1+—fy(x)d( ) (12)

and y(x) and Y(x) are characteristic admittance distribu-
tions of nonuniform transmission lines.

From circuits in Table IV, the equivalent circuit of the
transformed nonuniform transmission line with Z(x) can
be expressed as the mixed lumped and nonuniform distrib-
uted circuit shown in Fig. 2(b). Therefore, if an exact
network function of an original nonuniform transmission
line with W{(x) is given, a network function of a trans-

Original circuit Equivalent circuit

Z(x)

L G0 o
0 i
. )
x=0 x=2
Y (x) 4
(x) 9
Cy 7 k5 kil

i
==

x=0 x=£ x=0 x=2
Formula
RS
14 ) W(x)
K =1 tway ey, ww = K=
LOSO L k(x)z Ix
x
K =1 +%~g" y) Ay, veo =B e e
0/0 k™ (x)
2o W(x)
p : =0
@ (b)

Fig. 2. The new nonuniform transmission line and its equivalent circuit.

X(x)
¢ Lo W
x;O x=ll : ;
@ (b
Fig. 3. Extended Kuroda’s identity for a circuit consisting of lumped

reactance elements and a nonuniform transmission line.

formed nonuniform transmission line with Z(x) can be
exactly derived as follows:

1 0
2 3{ e e 2
C; D, JL Bl Cy Dy
k 0 1 0
o 1L _ k] (13
k JLoBI
Where, A, —D, and A, —D, are elements of chain

matrices of nonuniform tranmission line of Z(x) and W(x),
respectively.

Furthermore, by using equivalent transformations shown
in Table IV, equivalent relations shown in Fig. 3 (a) and
(b) are applicable. Where the characteristic impedance
distribution X(x) of the transformed nonuniform transmis-



KOBAYASHI ¢t al.; NONUNIFORM TRANSMISSION LINES

sion line is given by

o
1+—f"/’ (A)d( )}
- y(x)
) _1+~C1;f0’°/’ﬁd(%)}
Z(lx)
IS ! j:\/lW( )d(f) ’ 2
b 10/0/1[ = ey l} d(%)
o]
W(x)
(14)
and

g o3|
W(x)

(15)
We can repeat such equivalent procedures again and again,
so we can find exact network functions of a number of
nonuniform transmission lines.

Here, we apply extended Kuroda’s identity to several
circuits consisting of lumped inductances and nonuniform
transmission lines, and get exact network functions of
transformed nonuniform transmission lines.

A. Nth Order Binomial Form Nonuniform Transmission Line

In this case, the characteristic impedance distribution is
given by
1 x ) ’
h 1)

We obtain k,(x) of (6) and Z,(x) of (7) as follows:

,,(x)—1+3V;° —%{(1—%; ’;)nﬂﬂ} (17)

()= 1+ (16)
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Elements of a chain matrix [ F, ] of rnth order binomial form
nonuniform transmission line are given as follows [11]:

[b]‘[ﬁz g’;}. (19)
1) Case I; n= odd:
Ay =T (U o(B) Ny (1 )BI)
Nows (B Ty o1+ WBD)) (20)
B, = JWGTM- (U s 2 RBD) Ny o (1+ HBI)
Nowrnya(BBD) -Joy (14 DBD) (21)
C, J;;/ ]\7,; {Jen=1y2(hBL) Ny, 2 ((1+ H)BI)
Noweyy (B Ty 21+ WBD) (2)
D, =TM-{ N,y 2(hBI) - Jiry 2((1H B)BI)
T 2B Ny (A WIBD) (23)
where
J(BI) Bessel function,
N(BI) Neumann function
and
o [T [T
2
e N
2) Case 2; n=even;
Ay = (2B ey (1 )BD)
+ o 2(ABI) T — o1y 2 (14 B)BI) } (25)

B, = jW,T'M- {J—(n+1)/2(h:81)'J<n+1)/2((1+ h),Bl)
_J(n+1)/2(h:81)‘Jw(n+1)/z((1+h)Bl)} (26)

€o= 57+ 37 (BT sy (1 WD)
—J—(n—l)/2(h:81)'J(n—l)/2((1+h)ﬁl)} (27)
Db:T/M'{J—(n—l)/2(h181)'J(n+1)/2((1+h)Bl)
+J(n—l)/z(hﬁl)'J~(n+1)/2((1+h):81)} (28)
where
o \n/2 ThBl ﬂ'(l*i“h)ﬂl
(/TR )

Therefore, a chain matrix of the nonuniform transmission
line with Z,(x) of (18) is the same expression as (13) with
the W subscripts changed to b.
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If the following relation is satisfied

Wo n+l
=" (30)
then (18) simplifies as follows:
W
Zb(x): 9 P (31)
1 x\”
(1+5-7)

Namely, in this particular case, (n +2)th order convergent
type binomial form transmission line can be obtained from
nth order divergent type binomial form transmission line.

B. Exponential Transmission Line
The characteristic impedance distribution is given by
W.(x)=Wyexp (6x). (32)
From (6) and (7) we get

+L ——{exp(8x)—1}

(33)

and
Woexp (8x)

Z(x)= (34)

2
H—é —{exp(8x)—1}
By using a chain matrix of the exponential transmission
line, a chain matrix of the nonuniform transmission line
with Z (x) of (34) is given as the same expression as (13)
with the W subscripts changed to e. Elements of a chain
matrix [F,] of the exponential transmission line are given

. as follows [14]:
Ae Be
[Fe]—[ce D :l

€

(35)

1 8! sinh I/
A, N(coshI‘l—f-? T ) (36)
B, = jW,N-Bl" Smlfll” (37)
1 sinh I/
Ce—]VVONBZ T (38)
D,= (coshl’l— o, s1nth) (39)
T
where
2
r=y/(3) -8
(40)
N =ex ( —8—1 )
If the following relation is applicable:
Wo _
T, 8l (41)

then Z,(x) of (34) becomes the characteristic impedance
distribution of the convergent type exponential transmis-

(a) ®)
Fig. 4. Extended Kuroda's identity for the exponential transmission

line.

1 O:‘
Il

x=0 x=2 x=0 x={

(a) (b)

Extended Kuroda’s identity for the exponential transmission
line, the dual of circuits shown in Fig. 4.

Fig. 5.

il
T

(a) (b)

Fig. 6. Extended Kuroda’s identity for lumped reactance elements and
the exponential transmission line.

sion line
Z,(x)=Wyexp(~ 8x). (42)

As shown in Fig. 4, in this particular case, the circuit
consisting of the shunt lumped inductance and the diver-
gent type exponential transmission line (6 >0) is equal to
the one consisting of a cascade connection of the con-
vergent type exponential transmission line, the shunt
lumped inductance and an ideal transformer. Similarly, we
obtain Kuroda’s identity shown in Fig. 5. Therefore, from
Figs. 4 and 5, extended Kuroda’s identity shown in Fig. 6
is also obtained. Namely, a lumped reactance circuit may
be shifted through the exponential transmission line.

C. Hyperbolic Secant Squared Tapered Transmission Line

The characteristic impedance distribution W, (x) of hy-
perbolic secant squared tapered transmission line is given
by

W, (x)=W,sech? (8x). (43)
From (6) and (7) we obtain
W,
Sh(x)—1+ 5] L;’ tanh (8x) (44)
and
W, sech?
2, ()= D022 (8%) (45)

W, 2
1+ '('S—l z.—tanh(ﬁx)]
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Elements of a chain matrix [F,,] of the hyperbolic secant
squared tapered transmission line are given as follows [15]:

— ASh Bsh
r1- o o ()
Ash=cosh(8l)-cosh(l‘l)—81~sinh(81)-—Smhr(lrl)
(47)

Bl sinh(T7)
B, =W,
— 770 osh (s1) i

_ .1 T . cosh (T7)
C,,=J W R {8[ smh(SI)-——————rl

—cosh(SI)-sinh(I‘l)}

(48)

(49)

_ cosh(I7)
" cosh (81)

where
TI=y(81) —(BI). (51)

A chain matrix of the nonuniform transmission line with
Z,(x) of (45) is given as the same expression as (13) with
the W subscripts changed to sh.

If the following relation is satisfied

W,
0 =51

I, (52)
then Z ,(x) of (45) becomes the characteristic impedance
distribution of the convergent type exponential transmis-
sion line

(50)

Z,(x)=W,exp(—28x). (53)

D. Hermite Line
In this case, the characteristic impedance distribution is
Wi (x)=Woexp[(8x)°]. (54)
We obtain k;,(x) of (6) and Z,(x) of (7) as follows:

1 VI/O o0 (6x)2m+1

=14+=—" —_ 7

=I5 T 2 Gt Y
and
Wyexp | (8x)

Z,(x)= oorp] ]2 —. (50)

1+_1_ % 2 _(_(Ef)_._

8 Ly Z,(2m+1)-m!

Therefore, by using the chain matrix of Hermite line [9],
the chain matrix of the nonuniform transmission line with
Z,(x) of (56) can be obtained as the same expression as
(13).

By applying extended Kuroda’s identity shown in Fig. 3
and repeating the same procedure for nonuniform trans-
mission lines in examples III-A-III-D, we may obtain
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exact network functions of a number of nonuniform trans-
mission lines.

IV. CoNcLUSION

We have shown that Kuroda’s identity can be extended
to circuits consisting of lumped reactance elements and
general nonuniform transmission lines, by considering the
limit case of uniform transmission lines (n — o0). A char-
acteristic impedance distribution Z(x) of a transformed
nonuniform transmission line may be uniquely obtained
from a characteristic impedance distribution W(x) of an
original nonuniform transmission line. Also, if an exact
network function of an original nonuniform transmission
line is known, a network function of a transformed nonuni-
form transmission line can be exactly derived from the
equivalent circuit. Finally, we applied extended Kuroda’s
identity to several circuits consisting of lumped induc-
tances and nonuniform transmission lines, and get exact
network functions of transformed nonuniform transmis-
sion lines.

APPENDIX
DERIVATION OF (5)

Substituting (1) in (4):

i)
kj:1+—L_ 2

ll[H—al(z D+ (-1

-+n—',;’,(i—1)’"+ ]

=1+

21+

=1

E (i 1)+— E (i—

L0
L i=1

a, 3 :
4o+ 2 SGE-1)"+---

n 1=1

+ﬂ{(1;1)2+(j;1)}
G-V, (=D’ (1—1)}
2 6

_1)3 (_1)2
TREL

1 M
=1+

_._1)

S
i
Y

1)m+1 (j_l)m
n" m-+1 2 toogt -(5)
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