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IEEE

,4bstract —Knroda’s identity may be extended to circuits consisting of

lumped reactance elements and nonuniform transmission lines. It is shown

that these circuits are equivalent to circuits consisting of cascade connec-

tions of nonuniform transmission lines whose characteristic impedance
distributions are different from original ones, lumped reactance elements,

and ideal transformers. If a characteristic impedance distribution W(x) of

an original nonuniform transmission line is given, a characteristic imped-
ance distribution Z(x) of a transformed nonuniform transmission line may

be uniquely obtained using W(x). Moreover, by using these equivalent

transformations, network functions of these transformed nonuuifonn trans-
mission lines can he derived exactly.

I. INTRODUCTION

I

T IS well known that nonuniform transmission lines

show superior transmission responses than the ones of

uniform transmission lines. But, it is quite difficult to find

the exact network functions of general nonuniform trans-

mission lines from the telegrapher’s equation except some

nonuniform transmission lines [1]–[12].

On the other hand, we showed that the network func-

tions of a class of nonuniform transmission lines can be
exactly derived by using extended Kuroda’s identities to

mixed lumped and distributed circuits [13].

In this paper, we show a method to extend Kuroda’s

identities for mixed lumped and nonuniform distributed

circuits. Nonuniform transmission lines are shown in the
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limit of cascaded transmission lines (CTL’S) when line

length of unit element (UE) approaches zero. By applying

Kuroda’s identities to circuits consisting of a single stub

and CTL’S n times, we can show that Kuroda’s identities

can be extended to circuits consisting of a lumped reac- ,

tance element and a nonuniform transmission line as the

limit case. The transformed circuit becomes the one con-

sisting of a cascade connection of a nonuniform transmis-

sion line, a lumped reactance element, and an ideal trans-

former. Namely, if a characteristic impedance distribution

W(x) of an original nonuniform transmission line can be

integrated, a characteristic impedance distribution Z(x) of

a transformed nonuniform transmission line may be

uniquely obtained using W(x). Also, if an exact network

function of an original nonuniform transmission line is

known, a network function of a transformed nonuniform

transmission line can be obtained exactly. We derive exact

network functions of several nonuniform transmission lines

by applying extended Kuroda’s identity to nth order bi-
nomial form nonuniform transmission line, exponential

transmission line, and hyperbolic secant squared tapered

transmission line.

II. REPRESENTATION OF NONUNIFORM

TRANSMISSION LINES

Cascaded transmission lines (CTL’S) are shown in Fig.

1(a), where line length and a characteristic impedance of a

lossless uniform transmission line (UE) are l/n and ~
(~=l,z,... , n), respectively.
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transmission lines from (1)

[ (;)+4;)2 .W(x)= lim ~=WO l+al
n+cx

+.. .+a J;)m+ ...]. (3)
Fig. 1. Cascaded transmission fines and a nonuniform transmission fine.

Several examples are given in Table 1.

III. EXTENDED KURODA’S IDENTITIES FOR MIXED

LUMPED AND NONUNIFORM DISTRIBUTED CIRCUITSTABLE I

CHARACTERISTIC IMPEDANCE DISTRIBUTION OF NONUNIFORM

TRANSMISSION LINE

Char?. cter, scz. Impedance
D,str,but,on W(x)

By using Kuroda’s identity n times to the circuit consist-

ing of a single short-circuited stub and CTL’S, we can

obtain the equivalent transformation I in Table II [13].

Where kj is the transformer ratio obtained after the jth

Kuroda’s identity, and given by

X
1

2

3

4

5

6

7

8

Coeff, c.ent$ a
m

.=0
m

(m=l,2, ---)
—

al=llh

.=O
m

(m=2,3, ---)

Note

u.lf.arm t.ansmissio. line

l.nearly tapered tr.ns-

171. ssIo. line

h : taper coefficient

parabolic tapered trarl.-

mlsslon line

n-th order binomial form

nonuniform transmission

11.,

exponential transmission

line

6 : taper coefficient

Hermit. line

hyperbolic . . . . . . swared

capered t.ansm.ss, on 1,”.

w“.,, root tapered

tranmn>ssum 11..

u“(x) = W.

k,=l++ j ~ (j=l,2,...,n). (4)
~1=1

Similarly, for the circuit consisting of a single open-circuited

stub and CTL’S, we can obtain the equivalent transforma-

tion II in Table III [13]. Kuroda’s identities in Tables II

and III are dual transformations.

By substituting (1) in (4), we get

.1=2/b , a2=Uh2

.=13
m

(m=3,4, ---)

.=( :)(+)mm

(M=l, z,---, n)

a =0
tl+r

(r=l,2,---)

( 6k )m
a=y

m

(.=1,2, ---)

( 6, )’m
‘2.- m !

a2w 1= 0

(m=l,2, ---)

[{
k,=l+~ j+: ‘~;1)2+~

}

{

+3 (j–1)3 +(H)’+(H)

nz 3 2 6 1
We(x) = Woew( 6.)

WH(X) = Woexp [(6x)2]

+-. .

{

+~ W)m+’+m)m+...
nm m+l 2

.-
‘2.

“m-l= 0

(m=1,2, ---) 1+.... (5)

ve obtain

wch(X) = WOcosh2(6xl

, .(-l)M-l
m

(2m-3)!l : 1 ~rn

.! zm h

(.=1.2, ---)

By using the same techniques shown in [13]
‘r(x) = ‘OFF

.-

(6)

(7)

(8)

Here, we define the characteristic impedance of the ith
--

and
UE of the circuit shown in Fig. l(a) as follows:

Wj
Z(x)= lim ZJ= lim —

n-w n+cc kj_lkj

w(x) = w(x)——

k,x)z [I+&~W(A)d($)~

[
W=WO l+~(i–l)+~(i–1)2

+.. . +~(i–l)m+ . . .1(1)

where W. is the characteristic impedance of the first UE

andan(m=l,2, . . . ) are constants. Also, the coordinates

x of the i th UE is given as follows [13]:

where

L=nLo.
,.
X=A1.

n
(2) Namely, a characteristic impedance distribution Z(x) of a

transformed nonuniform transmission line may be uniquely

expressed with an integration of a characteristic impedance

distribution W(x) of an original nonuniform transmission

line. The impedance z and Z of the single short-circuited

By setting coefficients am appropriate values and proceed-

ing to the limit n + co [13], we can obtain the various

characteristic impedance distribution W(x) of nonuniform
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TABLE II

KURODA’S IDENTITY I

Or.g.”al c,rcu, t Ew.v.lenr .~r..it

I F. rmu 1a

~J
kj=l+yzw, (j=1,2, ---, n) , ko=l

1=1 ‘

z .&
3

(1=1,2, ---,.) , Ln =%
,-1 kj “

L,Ln, ZJ : character, st. c ,mped,ances

TABLE III
KURODA’S IDENTITY II

I Or,glnal CIrc.lt I Eq....l.nt ..r... t 1

Jcl-9.in & _...~cnl~&nl’&---—---—-yl* ...&&..& ‘1 J n

—t > —t—

I Formula I

1 kl=l+~; y (1=1,2, ---,.) , k. = 1
,=1 1

1

y]Y =~ (j=1,2,---, n) , cn =+-
1 ,-1 kj “

I “’.’’”, character zst, c ?.dmttances I

stubs in Table II yield

[ 1J@_lim z = lim jnLo tan; – jLo@ (9)
n-m n-co

J Ytan$l=+’pz’10)lim Z= lim j—
n+w

where

and ~ is

k=k(x)[x=, (11)

the phase constant. The single short-circuited

stubs become lumped inductances. Si&ilarly, the single

open-circuited stubs in Table 111 become lumped capaci-

tors. Extended Kuroda’s identities for mixed lumped and
nonuniform distributed circuits are shown in Table IV.

Where

k’=l++&x)d(f)
o

(12)

and y(x) and Y(x) are characteristic admittance distribu-

tions of nonuniform transmission lines.

From circuits in Table IV, the equivalent circuit of the

transformed nonuniform transmission line with 2(x ) can

be expressed as the mixed lumped and nonuniform distrib-

uted circuit shown in Fig. 2(b). Therefore, if an exact

network function of an original nonuniform transmission

line with W(x) is given, a network function of a trans-

TABLE IV
EXTENDED KURODA’S IDENTITIES

(a) (b)./
Fig. 2. The new nonuniform transmission line and its equivrdent circuit,

, I 1 1 1
~ / / // / /

,=0
, ,

,=L

(a) (b)

Fig. 3 Extended Kuroda’s identity for a circuit consisting of lumped
reactance elements and a nonuniform transmission line,

formed nonuniform transmission line with Z(x) can be

exactly derived as follows:

Where, A ~ –Dz and Aw– D ~ are elements of chain

matrices of nonuniform transmission line of Z(x) and W(x),

respectively.

Furthermore; by using equivalent transformations shown

in Table IV, equivalent relations shown in Fig. 3 (a) and

(b) are applicable. Where the characteristic impedance

distribution X(x) of the transformed nonuniform transmis-
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sion line is given by

_n’z(x)2 _ k’(x)2x(x)= L=_ —
Y(x) y(x) – y(x)

[l++~%)d(+]]’

y(x)

‘;l#l#)]2

—
1
1

z(x)

———

[,++--(%(@$)]2
w(x)

(14)

and

(15)

We can repeat such equivalent procedures again and again,

so we can find exact network functions of a number of

nonuniform transmission lines.

Here, we apply extended Kuroda’s identity to several

circuits consisting of lumped inductances and nonuniform

transmission lines, and get exact network functions of

transformed nonuniform transmission lines:

A. Nth Order Binomial Form Nonuniform Transmission Line

In thk case, the characteristic impedance distribution is

given by

‘JX)=4+H” (16)

We obtain k,(x) of (6) and Zb(x) of (7) as follows:

kb(x)=l+~”~
o

((l++ .;jn+’-l] (17,

143

Elements of a chain matrix [Fb ] of n th order binomial form

nonuniform transmission line are given as follows [11]:

[1[Fb]= :: ::. (19)

1) Case 1; n = odd:

A,=; . {J(n+i)/2(hBl) ”N(n-1)/2 ((l+h)/31)

– N(n+,),2 (hfll)J(.-l,,2((l+h)P~)} (20)

– N&+,)/2(M~) “+n+.l)/z((l+ h)~~)} (21)

‘&=j~”;”{’&),* (hpl)~.-,,,z((l+h)~l)
o

–N(n-1)/2(hP~)”~n-1)/2((l+h)~l)} (22)

~,= TM” {N(n–l)/#@) “J(n+l)/~ ((l+h)fll)

–~.–l)/*(hPz)”N(.+l)/* ((l+h)/31)} (23)

where

J.(@) Bessel function,

NH(~1) Neumann function

and

‘=FT7
~= l+h ‘/2

H h I

(24)

2) Case 2; n = even;

‘b= ; “ {J-(.+1)/2 (hPz)J(.-l,,2((l+h)Pz)

+ +,1+, ),2 (hPl).J-,.-,),2 ((l+ h)B~)} (25)

D,= jWoT’M” {J-(. +,),2 (h/31) 4.+,),2 ((1 + h)pl)

–+n+l)/2(fiB~) ”J-(n+l)/2((l +h)Bz)} (26)

–J_(n–1)/2(hB~) ”J(n–1)/2 ((l+h)/?l)} (27)

‘b ‘T’M” {J-(.- l)\*(h~l)”~.+l)/’((l+ ‘)81)

+ J(.–l)/2(W) “J–(.+1)/2 ((l+h)~l)} (28)

where

Therefore, a chain matrix of the nonuniform transmission

line with Zb(x) of (18) is the same expression as (13) with

the W subscripts changed to b.(18)
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If the following relation is satisfied

g=n+l

LO h

then (18) simplifies as follows:

“(X)=(’+:;)”+’”

(30)

(31)

Namely, in this particular case, (n+ 2)th order convergent

type binomial form transmission line can be obtained from

n th order divergent type binomial form transmission line.

B. Exponential Transmission Line

The characteristic impedance distribution is given by

W,(x) =WOexp(8x). (32)

From (6) and (7) we get

1 W.
ke(.x)=l +~”fi{exp(~x)-l)

o
(33)

and

Woexp (8x)
z,(x)=

[ I
(34)

2“

l+~. ~{exp(~x)–1}
o

By using a chain matrix of the exponential transmission

line, a chain matrix of the nonuniform transmission line

with Z,(x) of (34) is given as the same expression as (13)

with the W subscripts changed to e. Elements of a chain

matrix [ Fc] of the exponential transmission line are given

, as follows [14]:

sinh I’1
Be= jWoiV. fU. ~

C,=j$”$”bl.?
o

‘(
D,=N coshlT–:. w

)

(35)

(36)

(37)

(38)

(39)

where

If the following relation is applicable:

(41)

then 2,(x ) of (34) becomes the characteristic impedance

distribution of the convergent type exponential transmis-

==2Li33L
,=0 .=! ~= o .=1

(a) (b)

Fig. 4, Extended Kuroda’s Identity for the exponential transmission
line.

~ 7-&~

(a) (b)

Fig. 5. Extended Kuroda’s identity for the exponential transmission
line, the dual of circuits shown in Fig. 4,

I
/ / // / // , / // , / / / ,’ // / /, / / / /x=0 .= i .=~ x= t

(a) (b)

Fig. 6, Extended Kuroda’s identity for lumped reactance elements and
the exponential transmnsion line,

sion line

Ze(x)=Woexp(– 8x). (42)

As shown in Fig. 4, in this particular case, the circuit

consisting of the shunt lumped inductance and the diver-

gent type exponential transmission line (8> O) is equal to

the one consisting of a cascade connection of the con-

vergent type exponential transmission line, the shunt

lumped inductance and an ideal transformer. Similarly, we

obtain Kuroda’s identity shown in Fig. 5. Therefore, from

Figs. 4 and 5, extended Kuroda’s identity shown in Fig. 6

is also obtained. Namely, a lumped reactance circuit may

be shifted through the exponential transmission line.

C. Hyperbolic Secant Squared Tapered Transmission Line “

The characteristic impedance distribution W~~(x) of hy-

perbolic secant squared tapered transmission line is given

by

W$k(x)= Wosech2(8x). (43)

From (6) and (7) we obtain

1 Wo
k~h(x)= l+ti. ytanh(r?x)

o
(44)

and

Z,h(x)=
Wosech’ ( 8X )

[ 1
(45)

2“

l+~. ~tanh(dx)
o
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Elements of a chain matrix [F,~ ] of the hyperbolic secant

squared tapered’ transmission line are given as follows [15]:

sinh ( rl )
A,A=cosh(N) .cosh(rl)- &.sinh(N). rl

pl . sinh ( rl )

‘“~ = jWO” cosh (81) N

C~h=j#” ~{81”siA(81) .cOs~\rZ)
o

–cosh(~l). sinh(rl)
)

cosh ( rl )

‘S* = cosh(N)

where

A chain matrix of the nonuniform transmission

Z,h(.x) of (45) is given as the same expression as

the W subscripts changed to sh.

If the following relation is satisfied

(46)

(47)

(48)

(49)

(50)

(51)

line with

(13) with

(52)

then Z,,fi(x ) of (45) becomes the characteristic impedance

distribution of the convergent type exponential transmis-

sion line

Z,~(~)= Woexp(–2&x). (53)

D. Her-mite Line

In this case, the characteristic impedance distribution is

W~(x)= Woexp[(f3x)2]. (54)

We obtain kH(x) of (6) and ZH(X) of (7) as follows:

1 .~. ~ (w2’’1+’kH(~)=l+~ Lo ~=o (2m+l).7n! (55)

and

ZH(X)=
Woexp [(8x)2]

(56)

[ I
2m+l 2

l++.?. :
(8X) “

o ~= O(2m+l).rn!

Therefore, by using the chain matrix of Hermite line [9],

the chain matrix of the nonuniform transmission line with

Z~(.x) of (56) can be obtained as the same expression as

(13).

By applying extended Kuroda’s identity shown in Fig. 3

and repeating the same procedure for nonuniform trans-

mission lines in examples III-A–III-D, we may obtain

145

exact network functions of a number of nonuniform trans-

mission lines.

IV. CONCLUSION

We have shown that Kuroda’s identity can be extended

to circuits consisting of lumped reactance elements and

general nonuniform transmission lines, by considering the

limit case of uniform transmission lines (n+ m). A char-

acteristic impedance distribution 2(x ) of a transformed

nonuniform transmission line may be uniquely obtained

from a characteristic impedance distribution W(x) of an

original nonuniform transmission line. Also, if an exact

network function of an original nonuniform transmission

line is known, a network function of a transformed nonuni-

form transmission line can be exactly derived from the

equivalent circuit. Finally, we applied extended Kuroda’s

identity to several circuits consisting of lumped induc-

tances and nonuniform transmission lines, and get exact

network functions of transformed nonuniform transmis-

sion lines.

APPENDIX

DERIVATION OF (5)

Substituting (1) in (4):

+.. . +~(i–l)m +...
1

[
=1+9 j l+; ~(i–1)+~ ~(i–1)2

,=1 1=1 1=1

+.. . +~~(i–l)m+..:
,=1 1

[{.1+9j+!l(j-l)’ +(j-l)

n 2 2 1
+g2(H)3+(j-02+(j-1){n2 3 2 6 1

+3 (j-04 +(j-03+(M2 +

{n’ 4 2 14 .“””

+fi (j–l)”+’

{

+ (j-l)-’

}]2 ‘“”” ‘“”
. . (5)

n’” m+l
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