

Erik J. Bochové is a native of The Netherlands. He received the B.S. degree in 1965 and the Ph.D. degree in 1974 in physics from the University of Southern California. Until recently he was with the Institute of Physics of the State University of Campinas (UNICAMP). Presently he is staff member of the Telebrás Research and Development Center in Campinas, S. P., Brazil.

Rui F. Souza (S'73-M'76) was born in São Paulo, Brazil, on December 13, 1946. He received the B.E.E. degree from the University of São Paulo,

Brazil, in 1969, the M.S.E.E. degree from State University of Campinas (UNICAMP), Brazil, in 1972, and the Ph.D. degree from Cornell University, Ithaca, NY, in 1976.

From January 1970 to February 1971 he was a researcher at the National Commission for Space Activities (CNAE) in the field of radio noise and VLF propagation. Since 1971 he has been a faculty member of the Department of Electrical Engineering at the State University of Campinas where he has been engaged in the areas of VLF propagation, microwaves, and digital radio.

Equivalent Representations of Nonuniform Transmission Lines Based on the Extended Kuroda's Identity

KUNIKATSU KOBAYASHI, YOSHIKI NEMOTO, MEMBER, IEEE, AND RISABURO SATO, FELLOW,
IEEE

Abstract—Kuroda's identity may be extended to circuits consisting of lumped reactance elements and nonuniform transmission lines. It is shown that these circuits are equivalent to circuits consisting of cascade connections of nonuniform transmission lines whose characteristic impedance distributions are different from original ones, lumped reactance elements, and ideal transformers. If a characteristic impedance distribution $W(x)$ of an original nonuniform transmission line is given, a characteristic impedance distribution $Z(x)$ of a transformed nonuniform transmission line may be uniquely obtained using $W(x)$. Moreover, by using these equivalent transformations, network functions of these transformed nonuniform transmission lines can be derived exactly.

I. INTRODUCTION

IT IS well known that nonuniform transmission lines show superior transmission responses than the ones of uniform transmission lines. But, it is quite difficult to find the exact network functions of general nonuniform transmission lines from the telegrapher's equation except some nonuniform transmission lines [1]–[12].

On the other hand, we showed that the network functions of a class of nonuniform transmission lines can be exactly derived by using extended Kuroda's identities to mixed lumped and distributed circuits [13].

In this paper, we show a method to extend Kuroda's identities for mixed lumped and nonuniform distributed circuits. Nonuniform transmission lines are shown in the

limit of cascaded transmission lines (CTL's) when line length of unit element (UE) approaches zero. By applying Kuroda's identities to circuits consisting of a single stub and CTL's n times, we can show that Kuroda's identities can be extended to circuits consisting of a lumped reactance element and a nonuniform transmission line as the limit case. The transformed circuit becomes the one consisting of a cascade connection of a nonuniform transmission line, a lumped reactance element, and an ideal transformer. Namely, if a characteristic impedance distribution $W(x)$ of an original nonuniform transmission line can be integrated, a characteristic impedance distribution $Z(x)$ of a transformed nonuniform transmission line may be uniquely obtained using $W(x)$. Also, if an exact network function of an original nonuniform transmission line is known, a network function of a transformed nonuniform transmission line can be obtained exactly. We derive exact network functions of several nonuniform transmission lines by applying extended Kuroda's identity to n th order binomial form nonuniform transmission line, exponential transmission line, and hyperbolic secant squared tapered transmission line.

II. REPRESENTATION OF NONUNIFORM TRANSMISSION LINES

Cascaded transmission lines (CTL's) are shown in Fig. 1(a), where line length and a characteristic impedance of a lossless uniform transmission line (UE) are l/n and W_i ($i = 1, 2, \dots, n$), respectively.

Manuscript received July 8, 1981; revised Sept. 14, 1981.

K. Kobayashi is with the Department of Electrical Engineering, Faculty of Engineering, Yamagata University, Yonezawa 992, Japan.

Y. Nemoto and R. Sato are with the Department of Information Science, Faculty of Engineering, Tohoku University, Sendai 980, Japan.

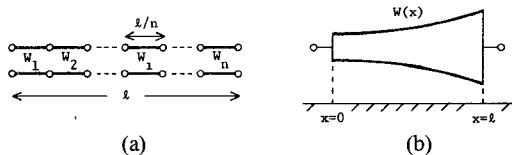


Fig. 1. Cascaded transmission lines and a nonuniform transmission line.

TABLE I
CHARACTERISTIC IMPEDANCE DISTRIBUTION OF NONUNIFORM
TRANSMISSION LINE

	Coefficients a_m	Characteristic Impedance Distribution $W(x)$	Note
1	$a_m = 0$ ($m=1, 2, \dots$)	$W_u(x) = W_0$	uniform transmission line
2	$a_1 = 1/h$ $a_m = 0$ ($m=2, 3, \dots$)	$W_l(x) = W_0(1 + \frac{1}{h} \frac{x}{l})$	linearly tapered transmission line h : taper coefficient
3	$a_1 = 2/h$, $a_2 = 1/h^2$ $a_m = 0$ ($m=3, 4, \dots$)	$W_p(x) = W_0(1 + \frac{1}{h} \frac{x}{l})^2$	parabolic tapered transmission line
4	$a_m = (\frac{n}{m})(\frac{1}{h})^m$ ($m=1, 2, \dots, n$) $a_{n+r} = 0$ ($r=1, 2, \dots$)	$W_b(x) = W_0(1 + \frac{1}{h} \frac{x}{l})^n$	n -th order binomial form nonuniform transmission line
5	$a_m = \frac{(\delta l)^m}{m!}$ ($m=1, 2, \dots$)	$W_e(x) = W_0 \exp(\delta x)$	exponential transmission line δ : taper coefficient
6	$a_{2m} = \frac{(\delta l)^{2m}}{m!}$ $a_{2m-1} = 0$ ($m=1, 2, \dots$)	$W_H(x) = W_0 \exp[(\delta x)^2]$	Hermite line
7	$a_{2m} = \frac{(2\delta l)^{2m}}{2 (2m)!}$ $a_{2m-1} = 0$ ($m=1, 2, \dots$)	$W_{ch}(x) = W_0 \cosh^2(\delta x)$	hyperbolic cosine squared tapered transmission line
8	$a_m = (-1)^{m-1}$ $\frac{(2m-3)!!}{m! 2^m} (\frac{1}{h})^m$ ($m=1, 2, \dots$)	$W_r(x) = W_0 \sqrt{1 + \frac{1}{h} \frac{x}{l}}$	square root tapered transmission line

Here, we define the characteristic impedance of the i th UE of the circuit shown in Fig. 1(a) as follows:

$$W_i = W_0 \left[1 + \frac{a_1}{n}(i-1) + \frac{a_2}{n^2}(i-1)^2 + \dots + \frac{a_m}{n^m}(i-1)^m + \dots \right] \quad (1)$$

where W_0 is the characteristic impedance of the first UE and a_m ($m=1, 2, \dots$) are constants. Also, the coordinates x of the i th UE is given as follows [13]:

$$x = \frac{i}{n} l. \quad (2)$$

By setting coefficients a_m appropriate values and proceeding to the limit $n \rightarrow \infty$ [13], we can obtain the various characteristic impedance distribution $W(x)$ of nonuniform

transmission lines from (1)

$$W(x) = \lim_{n \rightarrow \infty} W_i = W_0 \left[1 + a_1 \left(\frac{x}{l} \right) + a_2 \left(\frac{x}{l} \right)^2 + \dots + a_m \left(\frac{x}{l} \right)^m + \dots \right]. \quad (3)$$

Several examples are given in Table I.

III. EXTENDED KURODA'S IDENTITIES FOR MIXED LUMPED AND NONUNIFORM DISTRIBUTED CIRCUITS

By using Kuroda's identity n times to the circuit consisting of a single short-circuited stub and CTL's, we can obtain the equivalent transformation I in Table II [13]. Where k_j is the transformer ratio obtained after the j th Kuroda's identity, and given by

$$k_j = 1 + \frac{1}{L} \sum_{i=1}^j W_i \quad (j=1, 2, \dots, n). \quad (4)$$

Similarly, for the circuit consisting of a single open-circuited stub and CTL's, we can obtain the equivalent transformation II in Table III [13]. Kuroda's identities in Tables II and III are dual transformations.

By substituting (1) in (4), we get

$$k_j = 1 + \frac{W_0}{L} \left[j + \frac{a_1}{n} \left\{ \frac{(j-1)^2}{2} + \frac{(j-1)}{2} \right\} + \frac{a_2}{n^2} \left\{ \frac{(j-1)^3}{3} + \frac{(j-1)^2}{2} + \frac{(j-1)}{6} \right\} + \dots + \frac{a_m}{n^m} \left\{ \frac{(j-1)^{m+1}}{m+1} + \frac{(j-1)^m}{2} + \dots \right\} + \dots \right]. \quad (5)$$

By using the same techniques shown in [13], we obtain

$$k(x) = \lim_{n \rightarrow \infty} k_j = 1 + \frac{W_0}{L_0} \left[\left(\frac{x}{l} \right) + \frac{a_1}{2} \left(\frac{x}{l} \right)^2 + \frac{a_2}{3} \left(\frac{x}{l} \right)^3 + \frac{a_m}{m+1} \left(\frac{x}{l} \right)^{m+1} + \dots \right] = 1 + \frac{1}{L_0} \int_0^{x/l} W(\lambda) d\left(\frac{\lambda}{l}\right) \quad (6)$$

and

$$Z(x) = \lim_{n \rightarrow \infty} Z_j = \lim_{n \rightarrow \infty} \frac{W_j}{k_{j-1} k_j} = \frac{W(x)}{k(x)^2} = \frac{W(x)}{\left[1 + \frac{1}{L_0} \int_0^{x/l} W(\lambda) d\left(\frac{\lambda}{l}\right) \right]^2} \quad (7)$$

where

$$L = nL_0. \quad (8)$$

Namely, a characteristic impedance distribution $Z(x)$ of a transformed nonuniform transmission line may be uniquely expressed with an integration of a characteristic impedance distribution $W(x)$ of an original nonuniform transmission line. The impedance z and Z of the single short-circuited

TABLE II
KURODA'S IDENTITY I

Original circuit	Equivalent circuit
Formula	
$k_j = 1 + \frac{1}{L} \sum_{i=1}^j W_i \quad (j=1, 2, \dots, n) \quad , \quad k_0 = 1$	
$z_j = \frac{W_j}{k_{j-1} k_j} \quad (j=1, 2, \dots, n) \quad , \quad L_n = \frac{L}{k_n}$	
L, L_n, z_j : characteristic impedances	

TABLE III
KURODA'S IDENTITY II

Original circuit	Equivalent circuit
Formula	
$k_j = 1 + \frac{1}{C} \sum_{i=1}^j y_i \quad (j=1, 2, \dots, n) \quad , \quad k_0 = 1$	
$y_j = \frac{y_j}{k_{j-1} k_j} \quad (j=1, 2, \dots, n) \quad , \quad C_n = \frac{C}{k_n}$	
C, C_n, y_i, y_j : characteristic admittances	

stubs in Table II yield

$$\lim_{n \rightarrow \infty} z = \lim_{n \rightarrow \infty} \left[jnL_0 \tan \frac{\beta l}{n} \right] = jL_0 \beta l \quad (9)$$

$$\lim_{n \rightarrow \infty} Z = \lim_{n \rightarrow \infty} \left[j \frac{nL_0}{k_n} \tan \frac{\beta l}{n} \right] = j \frac{L_0}{k} \beta l \quad (10)$$

where

$$k = k(x)|_{x=l} \quad (11)$$

and β is the phase constant. The single short-circuited stubs become lumped inductances. Similarly, the single open-circuited stubs in Table III become lumped capacitors. Extended Kuroda's identities for mixed lumped and nonuniform distributed circuits are shown in Table IV. Where

$$k' = 1 + \frac{1}{C_0} \int_0^l y(x) d\left(\frac{x}{l}\right) \quad (12)$$

and $y(x)$ and $Y(x)$ are characteristic admittance distributions of nonuniform transmission lines.

From circuits in Table IV, the equivalent circuit of the transformed nonuniform transmission line with $Z(x)$ can be expressed as the mixed lumped and nonuniform distributed circuit shown in Fig. 2(b). Therefore, if an exact network function of an original nonuniform transmission line with $W(x)$ is given, a network function of a trans-

TABLE IV
EXTENDED KURODA'S IDENTITIES

Original circuit	Equivalent circuit
Formula	
$k(x) = 1 + \frac{1}{L_0} \int_0^x W(\lambda) d\left(\frac{\lambda}{l}\right) \quad , \quad Z(x) = \frac{W(x)}{k(x)^2} \quad , \quad k = k(x) _{x=l}$	
$k'(x) = 1 + \frac{1}{C_0} \int_0^x y(\lambda) d\left(\frac{\lambda}{l}\right) \quad , \quad Y(x) = \frac{y(x)}{k'(x)^2} \quad , \quad k' = k'(x) _{x=l}$	

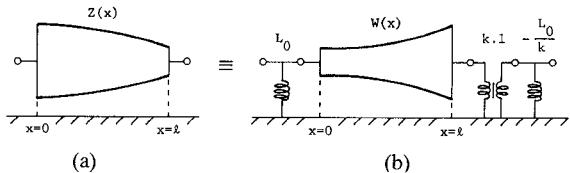


Fig. 2. The new nonuniform transmission line and its equivalent circuit.

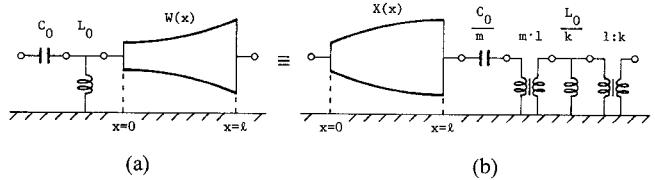


Fig. 3. Extended Kuroda's identity for a circuit consisting of lumped reactance elements and a nonuniform transmission line.

formed nonuniform transmission line with $Z(x)$ can be exactly derived as follows:

$$\begin{pmatrix} \mathbf{A}_Z & \mathbf{B}_Z \\ \mathbf{C}_Z & \mathbf{D}_Z \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ \frac{1}{jL_0\beta l} & 1 \end{pmatrix} \begin{pmatrix} \mathbf{A}_W & \mathbf{B}_W \\ \mathbf{C}_W & \mathbf{D}_W \end{pmatrix} \begin{pmatrix} k & 0 \\ 0 & \frac{1}{k} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ -\frac{1}{jL_0\beta l} & 1 \end{pmatrix}. \quad (13)$$

Where, $\mathbf{A}_Z - \mathbf{D}_Z$ and $\mathbf{A}_W - \mathbf{D}_W$ are elements of chain matrices of nonuniform transmission line of $Z(x)$ and $W(x)$, respectively.

Furthermore, by using equivalent transformations shown in Table IV, equivalent relations shown in Fig. 3 (a) and (b) are applicable. Where the characteristic impedance distribution $X(x)$ of the transformed nonuniform transmis-

sion line is given by

$$\begin{aligned}
 X(x) &\equiv \frac{1}{Y(x)} \equiv \frac{m(x)^2}{y(x)} = \frac{k'(x)^2}{y(x)} \\
 &= \frac{\left[1 + \frac{1}{C_0} \int_0^{x/l} y(\lambda) d\left(\frac{\lambda}{l}\right)\right]^2}{y(x)} \\
 &= \frac{\left[1 + \frac{1}{C_0} \int_0^{x/l} \frac{1}{Z(\lambda)} d\left(\frac{\lambda}{l}\right)\right]^2}{\frac{1}{Z(x)}} \\
 &= \frac{\left[1 + \frac{1}{C_0} \int_0^{x/l} \left\{ \frac{\left[1 + \frac{1}{L_0} \int_0^{\lambda/l} W(x) d\left(\frac{x}{l}\right)\right]^2}{W(\lambda)} \right\} d\left(\frac{\lambda}{l}\right)\right]^2}{\left[1 + \frac{1}{L_0} \int_0^{x/l} W(\lambda) d\left(\frac{\lambda}{l}\right)\right]^2} \\
 \end{aligned} \tag{14}$$

and

$$m = 1 + \frac{1}{C_0} \int_0^1 \left\{ \frac{\left[1 + \frac{1}{L_0} \int_0^{\lambda/l} W(\lambda) d\left(\frac{\lambda}{l}\right)\right]^2}{W(x)} \right\} d\left(\frac{x}{l}\right). \tag{15}$$

We can repeat such equivalent procedures again and again, so we can find exact network functions of a number of nonuniform transmission lines.

Here, we apply extended Kuroda's identity to several circuits consisting of lumped inductances and nonuniform transmission lines, and get exact network functions of transformed nonuniform transmission lines.

A. Nth Order Binomial Form Nonuniform Transmission Line

In this case, the characteristic impedance distribution is given by

$$W_b(x) = W_0 \left(1 + \frac{1}{h} \cdot \frac{x}{l}\right)^n. \tag{16}$$

We obtain $k_b(x)$ of (6) and $Z_b(x)$ of (7) as follows:

$$k_b(x) = 1 + \frac{W_0}{L_0} \cdot \frac{h}{n+1} \left\{ \left(1 + \frac{1}{h} \cdot \frac{x}{l}\right)^{n+1} - 1\right\} \tag{17}$$

$$Z_b(x) = \frac{W_0 \left(1 + \frac{1}{h} \cdot \frac{x}{l}\right)^n}{\left[1 + \frac{W_0}{L_0} \cdot \frac{h}{n+1} \left\{ \left(1 + \frac{1}{h} \cdot \frac{x}{l}\right)^{n+1} - 1\right\}\right]^2}. \tag{18}$$

Elements of a chain matrix $[F_b]$ of n th order binomial form nonuniform transmission line are given as follows [11]:

$$[F_b] = \begin{bmatrix} \mathbb{A}_b & \mathbb{B}_b \\ \mathbb{C}_b & \mathbb{D}_b \end{bmatrix}. \tag{19}$$

1) Case 1; $n = \text{odd}$:

$$\begin{aligned}
 \mathbb{A}_b &= \frac{T}{M} \cdot \{ J_{(n+1)/2}(h\beta l) \cdot N_{(n-1)/2}((1+h)\beta l) \\
 &\quad - N_{(n+1)/2}(h\beta l) \cdot J_{(n-1)/2}((1+h)\beta l) \} \\
 \end{aligned} \tag{20}$$

$$\begin{aligned}
 \mathbb{B}_b &= jW_0 TM \cdot \{ J_{(n+1)/2}(h\beta l) \cdot N_{(n+1)/2}((1+h)\beta l) \\
 &\quad - N_{(n+1)/2}(h\beta l) \cdot J_{(n+1)/2}((1+h)\beta l) \} \\
 \end{aligned} \tag{21}$$

$$\begin{aligned}
 \mathbb{C}_b &= j \frac{1}{W_0} \cdot \frac{T}{M} \cdot \{ J_{(n-1)/2}(h\beta l) \cdot N_{(n-1)/2}((1+h)\beta l) \\
 &\quad - N_{(n-1)/2}(h\beta l) \cdot J_{(n-1)/2}((1+h)\beta l) \} \\
 \end{aligned} \tag{22}$$

$$\begin{aligned}
 \mathbb{D}_b &= TM \cdot \{ N_{(n-1)/2}(h\beta l) \cdot J_{(n+1)/2}((1+h)\beta l) \\
 &\quad - J_{(n-1)/2}(h\beta l) \cdot N_{(n+1)/2}((1+h)\beta l) \} \\
 \end{aligned} \tag{23}$$

where

$$\begin{aligned}
 J_n(\beta l) &\text{ Bessel function,} \\
 N_n(\beta l) &\text{ Neumann function} \\
 \end{aligned}$$

and

$$\begin{aligned}
 T &= \sqrt{\frac{\pi h \beta l}{2}} \sqrt{\frac{\pi(1+h)\beta l}{2}} \\
 M &= \left(\frac{1+h}{h} \right)^{n/2} \\
 \end{aligned} \tag{24}$$

2) Case 2; $n = \text{even}$:

$$\begin{aligned}
 \mathbb{A}_b &= \frac{T'}{M} \cdot \{ J_{-(n+1)/2}(h\beta l) \cdot J_{(n-1)/2}((1+h)\beta l) \\
 &\quad + J_{(n+1)/2}(h\beta l) \cdot J_{-(n-1)/2}((1+h)\beta l) \} \\
 \end{aligned} \tag{25}$$

$$\begin{aligned}
 \mathbb{B}_b &= jW_0 T' M \cdot \{ J_{-(n+1)/2}(h\beta l) \cdot J_{(n+1)/2}((1+h)\beta l) \\
 &\quad - J_{(n+1)/2}(h\beta l) \cdot J_{-(n+1)/2}((1+h)\beta l) \} \\
 \end{aligned} \tag{26}$$

$$\begin{aligned}
 \mathbb{C}_b &= j \frac{1}{W_0} \cdot \frac{T'}{M} \cdot \{ J_{(n-1)/2}(h\beta l) \cdot J_{-(n-1)/2}((1+h)\beta l) \\
 &\quad - J_{-(n-1)/2}(h\beta l) \cdot J_{(n-1)/2}((1+h)\beta l) \} \\
 \end{aligned} \tag{27}$$

$$\begin{aligned}
 \mathbb{D}_b &= T' M \cdot \{ J_{-(n-1)/2}(h\beta l) \cdot J_{(n+1)/2}((1+h)\beta l) \\
 &\quad + J_{(n-1)/2}(h\beta l) \cdot J_{-(n+1)/2}((1+h)\beta l) \} \\
 \end{aligned} \tag{28}$$

where

$$T' = (-1)^{n/2} \sqrt{\frac{\pi h \beta l}{2}} \sqrt{\frac{\pi(1+h)\beta l}{2}}. \tag{29}$$

Therefore, a chain matrix of the nonuniform transmission line with $Z_b(x)$ of (18) is the same expression as (13) with the W subscripts changed to b .

If the following relation is satisfied

$$\frac{W_0}{L_0} = \frac{n+1}{h} \quad (30)$$

then (18) simplifies as follows:

$$Z_b(x) = \frac{W_0}{\left(1 + \frac{1}{h} \cdot \frac{x}{l}\right)^{n+2}}. \quad (31)$$

Namely, in this particular case, $(n+2)$ th order convergent type binomial form transmission line can be obtained from n th order divergent type binomial form transmission line.

B. Exponential Transmission Line

The characteristic impedance distribution is given by

$$W_e(x) = W_0 \exp(\delta x). \quad (32)$$

From (6) and (7) we get

$$k_e(x) = 1 + \frac{1}{\delta l} \cdot \frac{W_0}{L_0} \{ \exp(\delta x) - 1 \} \quad (33)$$

and

$$Z_e(x) = \frac{W_0 \exp(\delta x)}{\left[1 + \frac{1}{\delta l} \cdot \frac{W_0}{L_0} \{ \exp(\delta x) - 1 \}\right]^2}. \quad (34)$$

By using a chain matrix of the exponential transmission line, a chain matrix of the nonuniform transmission line with $Z_e(x)$ of (34) is given as the same expression as (13) with the W subscripts changed to e . Elements of a chain matrix $[F_e]$ of the exponential transmission line are given as follows [14]:

$$[F_e] = \begin{bmatrix} \mathbb{A}_e & \mathbb{B}_e \\ \mathbb{C}_e & \mathbb{D}_e \end{bmatrix} \quad (35)$$

$$\mathbb{A}_e = \frac{1}{N} \left(\cosh \Gamma l + \frac{\delta l}{2} \cdot \frac{\sinh \Gamma l}{\Gamma l} \right) \quad (36)$$

$$\mathbb{B}_e = j W_0 N \cdot \beta l \cdot \frac{\sinh \Gamma l}{\Gamma l} \quad (37)$$

$$\mathbb{C}_e = j \frac{1}{W_0} \cdot \frac{1}{N} \cdot \beta l \cdot \frac{\sinh \Gamma l}{\Gamma l} \quad (38)$$

$$\mathbb{D}_e = N \left(\cosh \Gamma l - \frac{\delta l}{2} \cdot \frac{\sinh \Gamma l}{\Gamma l} \right) \quad (39)$$

where

$$\left. \begin{aligned} \Gamma l &= \sqrt{\left(\frac{\delta l}{2}\right)^2 - (\beta l)^2} \\ N &= \exp\left(\frac{\delta l}{2}\right) \end{aligned} \right\} \quad (40)$$

If the following relation is applicable:

$$\frac{W_0}{L_0} = \delta l \quad (41)$$

then $Z_e(x)$ of (34) becomes the characteristic impedance distribution of the convergent type exponential transmis-

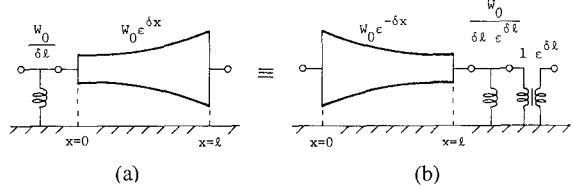


Fig. 4. Extended Kuroda's identity for the exponential transmission line.

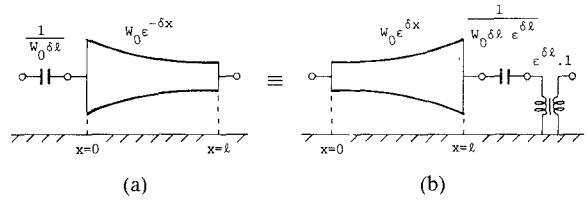


Fig. 5. Extended Kuroda's identity for the exponential transmission line, the dual of circuits shown in Fig. 4.

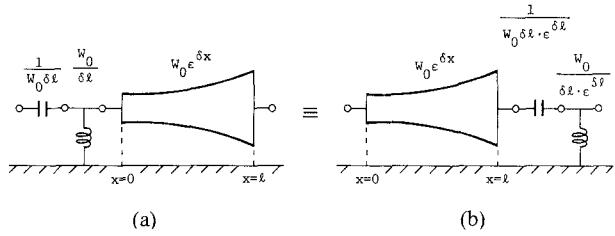


Fig. 6. Extended Kuroda's identity for lumped reactance elements and the exponential transmission line.

sion line

$$Z_e(x) = W_0 \exp(-\delta x). \quad (42)$$

As shown in Fig. 4, in this particular case, the circuit consisting of the shunt lumped inductance and the divergent type exponential transmission line ($\delta > 0$) is equal to the one consisting of a cascade connection of the convergent type exponential transmission line, the shunt lumped inductance and an ideal transformer. Similarly, we obtain Kuroda's identity shown in Fig. 5. Therefore, from Figs. 4 and 5, extended Kuroda's identity shown in Fig. 6 is also obtained. Namely, a lumped reactance circuit may be shifted through the exponential transmission line.

C. Hyperbolic Secant Squared Tapered Transmission Line

The characteristic impedance distribution $W_{sh}(x)$ of hyperbolic secant squared tapered transmission line is given by

$$W_{sh}(x) = W_0 \operatorname{sech}^2(\delta x). \quad (43)$$

From (6) and (7) we obtain

$$k_{sh}(x) = 1 + \frac{1}{\delta l} \cdot \frac{W_0}{L_0} \tanh(\delta x) \quad (44)$$

and

$$Z_{sh}(x) = \frac{W_0 \operatorname{sech}^2(\delta x)}{\left[1 + \frac{1}{\delta l} \cdot \frac{W_0}{L_0} \tanh(\delta x)\right]^2}. \quad (45)$$

Elements of a chain matrix $[F_{sh}]$ of the hyperbolic secant squared tapered transmission line are given as follows [15]:

$$[F_{sh}] = \begin{bmatrix} \mathbb{A}_{sh} & \mathbb{B}_{sh} \\ \mathbb{C}_{sh} & \mathbb{D}_{sh} \end{bmatrix} \quad (46)$$

$$\mathbb{A}_{sh} = \cosh(\delta l) \cdot \cosh(\Gamma l) - \delta l \cdot \sinh(\delta l) \cdot \frac{\sinh(\Gamma l)}{\Gamma l} \quad (47)$$

$$\mathbb{B}_{sh} = jW_0 \cdot \frac{\beta l}{\cosh(\delta l)} \cdot \frac{\sinh(\Gamma l)}{\Gamma l} \quad (48)$$

$$\begin{aligned} \mathbb{C}_{sh} = j \frac{1}{W_0} \cdot \frac{\Gamma l}{\beta l} & \left\{ \delta l \cdot \sinh(\delta l) \cdot \frac{\cosh(\Gamma l)}{\Gamma l} \right. \\ & \left. - \cosh(\delta l) \cdot \sinh(\Gamma l) \right\} \end{aligned} \quad (49)$$

$$\mathbb{D}_{sh} = \frac{\cosh(\Gamma l)}{\cosh(\delta l)} \quad (50)$$

where

$$\Gamma l = \sqrt{(\delta l)^2 - (\beta l)^2}. \quad (51)$$

A chain matrix of the nonuniform transmission line with $Z_{sh}(x)$ of (45) is given as the same expression as (13) with the W subscripts changed to sh .

If the following relation is satisfied

$$\frac{W_0}{L_0} = \delta l \quad (52)$$

then $Z_{sh}(x)$ of (45) becomes the characteristic impedance distribution of the convergent type exponential transmission line

$$Z_{sh}(x) = W_0 \exp(-2\delta x). \quad (53)$$

D. Hermite Line

In this case, the characteristic impedance distribution is

$$W_H(x) = W_0 \exp[(\delta x)^2]. \quad (54)$$

We obtain $k_H(x)$ of (6) and $Z_H(x)$ of (7) as follows:

$$k_H(x) = 1 + \frac{1}{\delta l} \cdot \frac{W_0}{L_0} \cdot \sum_{m=0}^{\infty} \frac{(\delta x)^{2m+1}}{(2m+1) \cdot m!} \quad (55)$$

and

$$Z_H(x) = \frac{W_0 \exp[(\delta x)^2]}{\left[1 + \frac{1}{\delta l} \cdot \frac{W_0}{L_0} \cdot \sum_{m=0}^{\infty} \frac{(\delta x)^{2m+1}}{(2m+1) \cdot m!} \right]^2}. \quad (56)$$

Therefore, by using the chain matrix of Hermite line [9], the chain matrix of the nonuniform transmission line with $Z_H(x)$ of (56) can be obtained as the same expression as (13).

By applying extended Kuroda's identity shown in Fig. 3 and repeating the same procedure for nonuniform transmission lines in examples III-A-III-D, we may obtain

exact network functions of a number of nonuniform transmission lines.

IV. CONCLUSION

We have shown that Kuroda's identity can be extended to circuits consisting of lumped reactance elements and general nonuniform transmission lines, by considering the limit case of uniform transmission lines ($n \rightarrow \infty$). A characteristic impedance distribution $Z(x)$ of a transformed nonuniform transmission line may be uniquely obtained from a characteristic impedance distribution $W(x)$ of an original nonuniform transmission line. Also, if an exact network function of an original nonuniform transmission line is known, a network function of a transformed nonuniform transmission line can be exactly derived from the equivalent circuit. Finally, we applied extended Kuroda's identity to several circuits consisting of lumped inductances and nonuniform transmission lines, and get exact network functions of transformed nonuniform transmission lines.

APPENDIX DERIVATION OF (5)

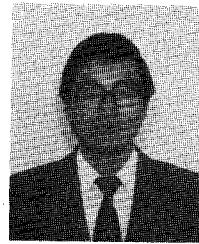
Substituting (1) in (4):

$$\begin{aligned} k_j &= 1 + \frac{W_0}{L} \sum_{i=1}^j \left[1 + \frac{a_1}{n} (i-1) + \frac{a_2}{n^2} (i-1)^2 \right. \\ &\quad \left. + \dots + \frac{a_m}{n^m} (i-1)^m + \dots \right] \\ &= 1 + \frac{W_0}{L} \left[\sum_{i=1}^j 1 + \frac{a_1}{n} \sum_{i=1}^j (i-1) + \frac{a_2}{n^2} \sum_{i=1}^j (i-1)^2 \right. \\ &\quad \left. + \dots + \frac{a_m}{n^m} \sum_{i=1}^j (i-1)^m + \dots \right] \\ &= 1 + \frac{W_0}{L} \left[j + \frac{a_1}{n} \left\{ \frac{(j-1)^2}{2} + \frac{(j-1)}{2} \right\} \right. \\ &\quad \left. + \frac{a_2}{n^2} \left\{ \frac{(j-1)^3}{3} + \frac{(j-1)^2}{2} + \frac{(j-1)}{6} \right\} \right. \\ &\quad \left. + \frac{a_3}{n^3} \left\{ \frac{(j-1)^4}{4} + \frac{(j-1)^3}{2} + \frac{(j-1)^2}{4} \right\} + \dots \right. \\ &\quad \left. + \frac{a_m}{n^m} \left\{ \frac{(j-1)^{m+1}}{m+1} + \frac{(j-1)^m}{2} + \dots \right\} + \dots \right]. \quad (5) \end{aligned}$$

REFERENCES

- [1] A. T. Starr, "The nonuniform transmission line," *Proc. IRE*, vol. 20, pp. 1052-1063, June 1932.
- [2] C. R. Burrows, "The exponential transmission line," *Bell Syst. Tech. J.*, vol. 17, pp. 555-573, Oct. 1938.
- [3] H. J. Scott, "The hyperbolic transmission line as a matching section," *Proc. IRE*, vol. 41, pp. 1654-1657, Nov. 1953.
- [4] H. Kaufman, "Bibliography of nonuniform transmission lines," *IRE Trans. Antennas Propagat.*, vol. AP-3, pp. 218-220, Oct. 1955.
- [5] V. Ramachandran and K. K. Nair, "Equivalent circuits of an exponential line," *IRE Trans. Circuit Theory*, vol. CT-7, pp. 71-74, Mar. 1960.

- [6] C. P. Womack, "The use of exponential transmission line in microwave component," *IRE Trans. Microwave Theory Tech.*, vol. MTT-10, pp. 124-132, Mar. 1962.
- [7] K. L. Su, "Analysis of trigonometric RC line and some applications," *IEEE Trans. Circuit Theory*, vol. CT-11, pp. 158-160, Mar. 1964.
- [8] S. C. D. Roy, "Some exactly solvable nonuniform RC lines," *IEEE Trans. Circuit Theory*, vol. CT-12, pp. 141-142, Mar. 1965.
- [9] M. N. S. Swamy and B. B. Bhattacharyya, "Hermite lines," *Proc. IEEE*, vol. 54, pp. 1577-1578, Nov. 1966.
- [10] B. S. Westcott, "Generalized confluent hypergeometric and hypergeometric transmission lines," *IEEE Trans. Circuit Theory*, vol. CT-16, pp. 289-294, Aug. 1969.
- [11] K. Kobayashi, Y. Nemoto and R. Sato, "Equivalent circuits of binomial form nonuniform transmission lines and their application," *Trans. IECE, Japan*, vol. 63-A, no. 11, pp. 807-814, Nov. 1980.
- [12] M. J. Ahmed, "Impedance transformation equations for exponentials, cosine-squared, and parabolic tapered transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-29, pp. 67-68, Jan. 1981.
- [13] K. Kobayashi, Y. Nemoto and R. Sato, "Kuroda's identity for mixed lumped and distributed circuits and their application to nonuniform transmission lines," *IEEE Trans. Microwave Theory Tech.*, vol. MTT-29, pp. 81-86, Feb. 1981.
- [14] G. Sugawara, Y. Nemoto, and R. Sato, "The transmission characteristics of the transmission lines constructed with the cascade connection of unit exponential lines," *Trans. IECE Japan*, vol. J60-A, no. 10, pp. 956-962, Oct. 1977.
- [15] Y. Sugawara, M. Oda, T. Ikeda, and R. Sato, "A directional coupler in nonuniform coupled transmission line," *Sci. Rep. Res. Inst., Ser. B (Elec. Commun.)*, Tohoku University, Sendai, Japan, vol. 39, no. 2, pp. 13-18, Sept. 1970.



Yoshiaki Nemoto (S'72-M'73) was born in Sendai City, Miyagiken, Japan, on December 2, 1945. He received the B.E., M.E., and Ph.D. degrees from Tohoku University, Sendai, Japan, in 1968, 1970, and 1973, respectively.

Since 1973 he has been a Research Associate with the Faculty of Engineering, Tohoku University. He has been engaged in research works in the distributed networks and computer networks using the satellite.

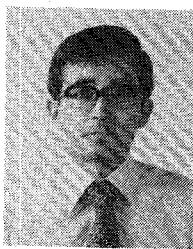
Dr. Nemoto is a member of the Institute of Electronics and Communication Engineers of Japan.

Risaburo Sato (SM'62-F'77) was born in Furukawa City, Miyagiken, Japan, on September 23, 1921. He received the B.E. and the Ph.D. degrees from Tohoku University, Sendai, Japan in 1944 and 1952, respectively.

From 1949 to 1961 he was an Assistant Professor at Tohoku University, and in 1961 he became a Professor in the Department of Electrical Communications at the same university. Since 1973 he has been a Professor in the Department of Information Science, at Tohoku University. From 1969

to 1970 he was an International Research Fellow at Stanford Research Institute, Menlo Park, CA. His research activities include studies of multiconductor transmission systems, distributed transmission circuits, antennas, communication systems, active transmission lines, magnetic and ferroelectric recording, neural information processing, computer networks, and electromagnetic compatibility. He has published a number of technical papers and some books in these fields, including *Transmission Circuit*.

Dr. Sato was Vice President of the Institute of Electronic and Communication Engineers of Japan from 1974 to 1976. He has been Radio Technical Council Commissioner of the Ministry of the Post and Telecommunications of Japan since 1974, a member of the Telecommunication Technology Consultative Committee at NTT since 1976, and a member of Science Council of Japan since 1978. He is also a member of the Institute of Electronics and Communication Engineers of Japan, the Institute of Electrical Engineers of Japan, the Institute of Television Engineers of Japan, and Information Procession Society of Japan.



Kunikatsu Kobayashi was born in Yamagata, Japan, on December 22, 1943. He received the B.E. and M.E. degrees from Yamagata University, Yonezawa, Japan, in 1966 and 1971, respectively.

From 1971 to 1975 he has been a Research Associate with the Faculty of Engineering, Yamagata University, and in 1975 he became a Lecturer at the same university. He has been engaged in research works in mixed lumped and distributed networks.

Mr. Kobayashi is a member of the Institute of Electronics and Communication Engineers of Japan.